Suggested solution of HW1

P. 171 Q4:

Define $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\varphi(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{Q}^{c}\end{cases}
$$

Then $f(x)-f(0)=\varphi(x)(x-0)$, for all $x \in \mathbb{R}$.
Since $|\varphi(x)| \leq|x|$, by squeeze theorem, $\varphi(x)$ is continuous at $x=0$. By Carathéodory's Theorem, f is differentiable at $x=0$ and $f^{\prime}(0)=\varphi(0)=0$.

P. 171 Q10:

At $c \neq 0$, the function $f(x)=\frac{1}{x^{2}}$ is differentiable at c and the function $h(x)=\sin x$ is differentiable at $\frac{1}{c^{2}}$. By Chain Rule, $h \circ f$ is differentiable at c and

$$
(g)^{\prime}(c)=h^{\prime}(f(c)) f^{\prime}(c)=2 c \sin \frac{1}{c^{2}}-\frac{2}{c} \cos \frac{1}{c^{2}} .
$$

At $\mathrm{c}=0$,

$$
\left|\frac{g(x)-g(0)}{x}\right|=\left|x \sin \frac{1}{x^{2}}\right| \leq|x|
$$

let $\epsilon>0$, there exists $\delta=\epsilon>0$ such that

$$
\left|\frac{g(x)-g(0)}{x}\right| \leq|x|<\epsilon, \forall 0<|x-0|<\delta .
$$

So g is differentiable for all $x \in \mathbb{R}$.
To show that g^{\prime} is unbounded, we pick a sequence $\left\{x_{n}\right\}$ such that $x_{n}=\frac{1}{2 \pi n}, \forall n \in \mathbb{N}$. Then, $g^{\prime}\left(x_{n}\right)=-4 \pi n$ which is unbounded.
P. 179 Q5:
n is a given natural number. Let $f:[1,+\infty) \rightarrow \mathbb{R}$ by $f(x)=x^{\frac{1}{n}}-(x-1)^{\frac{1}{n}}$.

$$
f^{\prime}(x)=\frac{1}{n}\left[x^{\frac{1-n}{n}}-(x-1)^{\frac{1-n}{n}}\right]<0, \forall x \geq 1 .
$$

So by mean value theorem, for all $x>y \geq 1$, there exists $\eta \in(y, x)$ such that

$$
f(x)-f(y)=f^{\prime}(\eta)(x-y)<0, \forall 1 \leq y<x .
$$

If $a>b>0$, put $x=\frac{a}{b}, y=1$, it implies

$$
\begin{aligned}
& 1=f(1)>f\left(\frac{a}{b}\right)=\left(\frac{a}{b}\right)^{\frac{1}{n}}-\left(\frac{a}{b}-1\right)^{\frac{1}{n}} \\
\Longrightarrow & (a-b)^{\frac{1}{n}}>a^{\frac{1}{n}}-b^{\frac{1}{n}} .
\end{aligned}
$$

P. 179 Q7:

Let $f:(0,+\infty) \rightarrow \mathbb{R}$ by $f(x)=\log x$.
By mean value theorem, for any $x>1$, there exists $\eta \in(1, x)$ such that

$$
\log x=f(x)-f(1)=f^{\prime}(\eta)(x-1)=\frac{1}{\eta}(x-1)
$$

Since $\eta \in(1, x), \frac{1}{x}<\frac{1}{\eta}<1$. Therefore,

$$
\frac{x-1}{x}<\log x<x-1, \forall x>1 .
$$

